

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 1

RECURRENT KNOWLEDGE BOUNDARIES IN
OUTSOURCED SOFTWARE PROJECTS: A LONGITUDINAL

STUDY

Complete Research Paper

Winkler, Maike, University of Bern, Switzerland, maike.winkler@iwi.unibe.ch

Brown, Carol, Stevens Institute of Technology, USA, carol.brown@stevens.edu

Huber, Thomas, University of Bern, Switzerland, thomas.huber@iwi.unibe.ch

Abstract
Knowledge boundaries can constrain cross-border collaboration. Based on a qualitative case study of
a distributed team, we examine which semantic knowledge boundaries recur and why they recur over
the life of an agile, outsourced software project. Based on our analysis of observational data, collabo-
ration tool data and interviews, we first identify the similar recurrent boundaries and categorize them
under three domains for this type of software application: Assembling, Designing, and Intended user
interaction. We then examine three practices utilizing software prototypes that team members used to
bridge them. First, we find that similar semantic knowledge boundaries related to all three of the do-
mains recur over the 10-month life of the project. Second, we find that team members repeatedly enact
the same practices to bridge similar knowledge boundaries over the life of the project. Our data also
suggest that team members in outsourced agile software development projects will likely use practices
to transcend, rather than traverse, knowledge boundaries. Based on these emergent findings, we develop
three propositions for future testing. Our study therefore contributes to the growing research streams
on knowledge boundaries in IS outsourcing and the usage of prototypes in agile software development.

Keywords: Knowledge boundaries, team collaboration, outsourced workforce and governance, IS out-
sourcing, agile development methods, object bridging practice

1 Introduction
It is well known that knowledge differences can impede cross-border team collaboration by creating
knowledge boundaries (e.g., Majchrzak et al., 2012, Carlile, 2002). Heterogeneous knowledge bases and
specializations cause different “thought worlds” (Dougherty, 1992). Consequently, team members de-
fine, and perceive situations from various perspectives (Baba et al., 2004, Boland and Tenkasi, 1995)
and do not interpret things in the same way (Cramton, 2001, Bechky, 2003, Carlile, 2002) – that is, they
encounter semantic knowledge boundaries (Carlile, 2002). Acquiring an understanding is crucial for
team members to effectively collaborate across organizational borders and has been acknowledged as a
major concern in the dispersed team literature (e.g., Cramton, 2001, Jarvenpaa and Leidner, 1998), par-
ticularly in the offshore information systems development (ISD) literature (e.g., Levina and Vaast, 2008,
Majchrzak et al., 2005, Sarker and Sahay, 2004, Carmel and Tjia, 2005).

In the offshore ISD context, client and vendor often have extreme knowledge asymmetries (Vlaar et al.,
2008). The client has business knowledge to develop the ideas for the software whereas the vendor
employees have relevant technical knowledge (Tiwana, 2004). The resulting different perspectives and
conceptions make it particularly challenging to interpret requirements (e.g., Bergman et al., 2002,
Gorschek and Wohlin, 2006). For example, vendor employees are likely to “inconsistently ambiguously,
and inaccurately interpret client needs” (Tiwana, 2004, p. 6). Hence, issues may endure over a longer

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 2

period of time (Herbsleb and Moitra, 2001). The earlier interpretive differences are revealed, the faster
they can be resolved by team members; otherwise, it can be costly and difficult to resolve them (Rowen,
1990). Since client and vendor employees are geographically distributed (Dibbern et al., 2008), advanc-
ing our understanding of practices to resolve differences in the interpretation of requirements needs
much closer investigation (Damian and Zowghi, 2003, Hull et al., 2010).

With the rise of agile software development practices with short iteration cycles and rapid prototyping
at its core (Schwaber and Beedle, 2002), the software prototype has become a common object facilitating
learning between team members (e.g., Highsmith, 2013, Cao and Ramesh, 2007). Immediate feedback
based on new revised prototypes may enable software developers to resolve differences in interpreta-
tions more quickly. Yet, while it is well acknowledged that bridging knowledge boundaries in offshore-
outsourced projects represents a major challenge (e.g., Dibbern et al., 2008, Levina and Vaast, 2008,
Kotlarsky et al., 2014), little is known about how practices with software prototypes may help to solve
interpretive differences within an agile software development project over the life of a project.

Therefore, in this study we seek to address the following general research questions: Which knowledge
boundaries recur over the life of an outsourced agile software development project when software pro-
totypes are used and why do they recur?

The paper is structured as follows. First, we present some relevant literature for our qualitative research
study, and elaborate on our research design. Then we present the findings that emerge from our qualita-
tive analyses, from which we develop propositions for future research. Finally, we summarize our con-
tributions and the implications for researchers and practitioners related to recurrent interpretive differ-
ences when software prototypes are used in outsourced software projects.

2 Background

2.1 Knowledge sharing approaches

Scholars agree that knowledge sharing is important to solve interpretive differences. However, there
are competing perspectives with regards to how this knowledge sharing occurs and how much
knowledge needs be shared.

On the one hand, scholars suggest that team members need to engage in rather effortful and time-con-
suming practices to traverse knowledge boundaries to converge knowledge bases and acquire a common
understanding across organizational borders (e.g., Carlile, 2002, Bechky, 2003). Traversing requires
team members to “identify,” “elaborate” and “then explicitly confront the differences and dependencies”
across boundaries through negotiations. This requires deep dialogue, time and resources (Majchrzak et
al., 2012 p. 951). Thus, vendor employees need to acquire in-depth business knowledge and the client
needs to obtain in-depth technical knowledge (Tiwana, 2004). In the ISD context, traversing practices
can be perceived as deeper knowledge sharing practices between client and vendor that help them to
gain a comprehensive understanding, i.e. an understanding that goes beyond the specific task at hand.

On the other hand, another stream of literature suggests that team members can integrate just enough
knowledge to transcend knowledge boundaries without acquiring an in-depth, shared understanding to
collaborate (e.g., Faraj and Xiao, 2006, Schmickl and Kieser, 2008, Majchrzak et al., 2012, Kellogg et
al., 2006). That is, team members tend to “explicitly avoid boundary distinctions through minimizing
differences and distinctions between specialty areas” (Majchrzak et al., 2012). This approach prevents
the risk of “becoming trapped in recommending practitioners to engage in costly and time-consuming
activities such as education and training to equalize their knowledge and experiences” (Vlaar et al.,
2008, p. 232). In the ISD context, transcending practices can be perceived as sufficient knowledge shar-
ing practices between client and vendor that help them to acquire a sufficient understanding. Software
developers aim to gain just enough knowledge to complete one specific task instead of a comprehensive
understanding of the overall, “bigger picture” of the software project.

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 3

Further, scholars across the fields of Sociology, Management and Information Systems have proposed
the use of boundary objects in these knowledge sharing approaches to facilitate cross-border collabora-
tion (e.g., Carlile, 2002, Carlile, 2004, Majchrzak et al., 2012, Kellogg et al., 2006, Star and Griesemer,
1989, Levina and Vaast, 2005, Bechky, 2003). Practices involving a variety of boundary objects have
recently received more attention by IS scholars. Different artifacts such as sketches and design drawings
or prototypes can be used as boundary objects (e.g., Star and Griesemer, 1989, Henderson, 1991,
Bechky, 2003, Carlile, 2002). These types of objects serve as reference points, while also being flexible
enough to adapt to the needs of each organizational site (Star and Griesemer, 1989).

Next we describe how the usage of prototypes as boundary objects in agile software development pro-
jects enables the client and vendor to bridge knowledge boundaries.

2.2 Using software prototypes for learning in agile software development

In agile software development contexts, client and vendor can use software prototypes to bridge
knowledge boundaries. During weekly planning and review meetings they present the software proto-
type to elicit knowledge about requirement and discuss their work, goals and obstacles (Danait, 2005).
Thus, the prototype has become a common object facilitating interactions between team members even
in offshored settings. However, the software prototype does not automatically function as boundary
object (Star, 2010, Levina and Vaast, 2005); the ability to operate as boundary object depends on how
the prototype is used in practice (Nicolini et al., 2012, Seidel and O'Mahony, 2014, Majchrzak et al.,
2012). Depending on how the software prototype is used in software development processes it may
facilitate cross-border learning.

Scholars describe software development as “a mutual learning process” between the involved stakehold-
ers (Kautz et al., 1992, p. 51) whereby learning is defined as the “growth in knowledge.” (Sørensen,
2009, p.130) Yet, traditional software development methods that have separated the software develop-
ment process into different phases discourage such learning (Kautz et al., 1992), particularly since feed-
back is delayed over longer periods of time (Cao and Ramesh, 2007). In contrast, scholars suggest that
agile software development facilitates learning during the development process (e.g., Dyba and
Dingsoyr, 2009, Nerur and Balijepally, 2007, Cao and Ramesh, 2007, Highsmith, 2013, Meso and Jain,
2006). The short iterative cycles (Awad, 2005) and frequent interactions that are part of agile software
development methods result in immediate feedback, which promotes learning across team members
(Meso and Jain, 2006, Cao and Ramesh, 2007, Berczuk, 2007). Frequent revisions of software proto-
types also support iterative learning (Kruchten, 2001): As team members are able to reflect on what has
(not) worked after iterations, they can adjust and change the process, practices and artifacts to make
improvements (Kruchten, 2001, Dingsøyr et al., 2012p. 1214, Highsmith, 2013). Thus, given that fre-
quent and immediate feedback on prototypes is a common practice, one would expect the recurrence of
knowledge boundaries to diminish over the life of an agile software development project.

2.3 Study Background

This paper is part of a larger study in which we investigate how knowledge boundaries can be bridged
in an outsourced software project when using the software prototype as boundary object (Winkler et al.,
2014). Our initial focus was on examining how different object bridging practices involving a software
prototype are used to bridge three different types of knowledge boundaries: syntactic, semantic, and
pragmatic (Carlile, 2002). We also distinguished between two types of software prototypes that team
members use in their boundary spanning practices as part of their agile software development practices:
1) the building prototype (BP), the more hypothetical system of the prototype that needs to be erected
to carry out and plan the software development task (e.g., written software requirements, design draw-
ings) and 2) the working prototype (WP), the system of the prototype that has already been developed
and is thus represented through functioning software prototype (adapted from Lyytinen and Newman,

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 4

2008). By focusing on the boundary spanning practices for what we refer to as an episode – i.e., identi-
fying the occurrence of a knowledge boundary and practices used by the team members that involved
one or both types of prototypes to bridge the three different types of knowledge boundaries – we iden-
tified five distinct use practices (UP) being utilized over the first six months of the project.

Surprisingly, during our on-going observations of virtual meetings between client and vendor for this
study, we also noted that over time similar semantic boundaries recurred, i.e., it seemed as if there were
instantiations of similar issues that continued to occur. That is, the outsourced software developers
seemed to continue interpreting similar project requirements differently than intended by the client over
the project’s life. Thus, the primary motivation for the study reported in this paper is to investigate this
unanticipated phenomenon – i.e., which semantic knowledge boundaries recurred despite the usage of
bridging practices that involved software prototypes to resolve them at an earlier point in time, and why.

The following three practices associated with semantic knowledge boundaries that were reported previ-
ously (Winkler et al., 2014) are therefore of primary interest here.

Contrasting: Visually contrasting the BP with the WP involved activities where the team members con-
trasted the BP with the WP by switching between screen shots, tables, and user story descriptions and
contrasting them with an already implemented functionality, feature or visual design. For example, a
developer opened the current prototype (WP) displaying a design that has already been implemented. In
addition, he opened a not yet implemented screen shot (BP) to contrast it with the already implemented
design to identify similarities and differences.

Exemplifying: Visually exemplifying in the BP or WP involved activities such as moving the mouse
cursor to the relevant part of either the BP or WP to visually highlight the term or click-through scenar-
ios. For example, a developer opened the current working prototype. The developer moved the mouse
cursor to a specific working functionality and clicks through an example.

Relating: This use practice, which was only applied by the client, involved orally relating a concept in
the WP or BP to a more holistic view in combination with Contrasting or Exemplifying, such as ex-
plaining the reason and meaning behind functionalities and how they are connected to the overall idea
for the software application. For example, the client used a table (BP) with general descriptions that are
relevant to different requirements to elaborate on how an idea in one requirement relates to the overall
software.

As will be described in more detail in our Methods section below, for this phenomenon-driven study we
also expanded our case study scope to include episodes over a 10-month timeline.

3 Methods

3.1 Case Selection, Data Collection and Empirical Context

Due to the lack of in-depth field studies on using software prototypes as boundary objects, our research
approach involves collecting and analyzing data from a single case in-depth (Yin, 2009, Sarker et al.,
2012). We observed something unexpected: similar differences in interpretations between the client and
vendor seemed to re-occur. For this particular study, our research was therefore guided by a phenome-
non-based approach aiming to capture, portray and conceptualize a phenomenon (von Krogh et al., 2012,
p. 278) that emerged from our initial analysis of the Case study.

Our in-depth case study data was collected over a 10-month offshore-outsourced software development
project that was being conducted using agile software methods. A client situated in Switzerland who
had an idea for a new software application decided to offshore the software development project to
Vietnam. A small offshore team located in Vietnam (6 team members) was responsible for developing
a novel software tool using agile development methodologies which we refer to as TechProduct. The

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 5

client was responsible for the creation of software requirements (i.e., user stories) which were then as-
signed to software developers in Vietnam. The software developers and Scrum Masters who facilitated
communication between them and the client had daily internal meetings where they discussed ideas and
problems with each other. Jointly they collected any open questions as a team to subsequently ask the
client. When a developer started working on a particular user story, he presented and discussed his work-
in-progress or completed work in virtual meetings taking place 2-3 times a week. In those meetings,
developers and client shared and used the current software prototypes (BP and/or WP) via screen shar-
ing.

The vision for the initial version of TechProduct was to provide users with a single social media tool
which enables them to manage information in various ways. Each user can create Tecs which contain
compressed information and share it with other users. This context and setting was appropriate for our
research purpose since team members engaged in activities with the software prototype in agile software
development contexts. Prototyping took place in an iterative manner throughout the software develop-
ment process. Since the knowledge bases of the client and the offshore software developers were very
different, interpretive differences were likely to remain throughout the project. That is, the client devel-
oped the software idea but did not have any experience with software development. Whereas the soft-
ware developers were not involved in the development of the software idea, they had the technical
knowledge to implement the requirements. In addition, the level of interdependence between the client
and developers was high: developers had to work with the outputs of the client (e.g., design sketches or
user stories as part of the BP) to understand requirements, whereas the client relied on the outputs of the
developers (the WP) who implemented these requirements. Thus, in the weekly meetings, team mem-
bers repeatedly engaged in practices with the software prototypes to address boundaries that occurred.

During the first six months of the project, team members focused on the implementation of the basic
TechProduct functionality and the design of the user interface, Tecs and profiles. The WP at the end of
this time period enabled multiple users to store and share information via Tecs with each other. During
the four subsequent months, the team focused on the implementation of further functionalities and fea-
tures, as well as the initial implementations on administrative support features (frontend and backend);
for example, the client was able to manage user queries. This and other features were also tested in a
closed beta test during this time period, and this user feedback led to an increased number of require-
ments to make improvements to basic functionalities and design. This 10-month time period therefore
enabled us to examine what is similar about semantic boundaries and in what ways the software proto-
types is used to bridge them over a project’s life.

To investigate our research questions for this study, we collected process data from the same software
development project team members. To reconstruct events and the time of events, we triangulated pro-
cess data from three different sources. Process data is comprised of “stories about what happened and
who did what when – that is, events, activities, and choices ordered over time” (Langley, 1999 p. 692).

(1) Recorded observational data: We attended and recorded all virtual (video and audio) meetings be-
tween the software developers and the client. These meetings took place between 2-3 times a week over
the 10-month period. During these interactions, the developers in Vietnam shared the latest prototype
(WP and/or BP) and discussed changes, problems and achievements with the client. In total we attended
91 meetings (average time: 23.5 min) resulting in 35.7 h and 339 pages of notes. The actual recordings
allowed us to assess when team members faced boundaries when working on different requirements
over a software development project as well as the practices with software prototypes the team members
engaged in.

(2) Collaboration tool data: The team used a collaboration tool called Assembla to organize and coor-
dinate software development processes. The tool encompassed all requirements and provided an over-
view to everyone in the team to raise awareness on who is working on what task. All log files and content
exchanged via Assembla during the 10-month time period were tracked. This allowed us for instance to
triangulate data of specific observations with additional information.

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 6

(3) In-depth interviews: In addition to the above data sources, we conducted and transcribed a total of
12 interviews with individuals in two interview rounds via Skype. These interviews were semi-struc-
tured ranging from 30-90 min to allow an appropriate degree of flexibility regarding the order of ques-
tions and scope for answers (Opie and Sikes, 2004). In the first round of interviews, we conducted
interviews with all project participants including the client (C), three developers (D1-3), two Scrum
Masters (SM1-2) and the third-party designer (TPD). Interviews with two of the developers took place
in form of a written survey due to language barriers. We asked about the project in general (e.g., com-
plexity, aims etc.), the collaboration and communication across boundaries and asked them to elaborate
on interpretive differences that they faced up to this point of the project. In the second round of inter-
views, we conducted interviews with five of the seven team members (e.g., client, developers, Scrum
Master) that were still actively involved in the project and participating in virtual meetings. For these
interviews we reviewed our notes from the virtual meetings as a basis for developing interview questions
that focused on any changes within the project (e.g., tasks, processes) and the reasons for why changes
occurred or did not occur. Then, we focused on how team members used the software prototypes to
address boundaries at different points in time from the client’s and the developers’ point of view.

3.2 Data analysis

Our analyses for this study began at the episode level – i.e., identifying when a semantic boundary
occurred and the specific boundary spanning use practice that was enacted. We then constructed a time-
line so that we could explicitly examine the episodes involving a semantic boundary that occurred over
the 10-month period. To answer the first part of our research question, which semantic knowledge
boundaries recur, we used an open coding process (Corbin and Strauss, 1990) that enabled us to identify
“similar” semantic boundaries and develop a categorization scheme. Our initial coding of the episodes
that involved semantic boundaries resulted in six concepts: Color, Sequence, Form, Count, Display and
Use (see Table 1). After comparing the episodes for each of these concepts we abstracted three higher-
level categories (Corbin and Strauss, 1990) which we refer to as domains: Design (Color, Form), As-
sembling (Sequence, Display), and Intended user interaction (Use, Count). After coding all of the epi-
sodes by domain, we then determined whether and when a similar form of semantic boundary occurred
over the 10-month project.

To answer the second part of our research question, why semantic knowledge boundaries recur, we then
compared the practices with software prototypes (Contrasting, Exemplifying, Relating) that the client
and software developers enacted for the recurring knowledge boundaries for each of the three domains.
We then utilized our interview data to triangulate our findings and better understand the reasons given
by the team members for why they engaged in certain practices.

In the next section we present our emergent findings and develop propositions that reflect our interpre-
tations.

4 Findings

4.1 Similar semantic knowledge boundaries that recur

Our findings reveal that team members faced similar semantic knowledge boundaries related to three
different domains over the life of the outsourcing project as they utilized agile software developments
to create a new interactive online tool for users. More specifically, our analyses identified six concepts
related to the specific TechProject, which we then categorized into one of three domains (Table 1).
Appendix 1 provides examples for similar semantic boundaries that recurred first for the two concepts
of each domain. Appendix 2 provides a detailed example of recurrent semantic boundaries for one of
the domains (Design).

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 7

Domains
Concepts from

TechProject
Example boundary Coding Extract

Assembling: In-
terpretive differ-
ences on how in-
formation should
be arranged

Sequence: Infor-
mation should be pre-
sented in a certain or-
der.

Display: Information
should be seen from
certain points of view.

A team member did not un-
derstand in which order se-
lected Tecs should be ar-
ranged

A team member did not un-
derstand what Tecs and
WebTecs of profile C can be
seen when they are linked to
profile C, but not to profile A
or B

"For unselected Tecs the order is
kept, but what about selected?”
(Observation, Month 6)

“For Tec and WebTec we should
see the content of profile C but I
don't know if the visibility for this
Tec in private or guide mode,
i.e., what we can see” (Observa-
tion, Month 7)

Designing: Inter-
pretive differ-
ences on how text
and visual repre-
sentations of in-
formation are de-
signed

Color: Texts or visual
representations
should be colored in a
way that conveys cer-
tain meaning.

Form: Texts or visual
representations
should be formed in a
certain way.

A team member did not un-
derstand which color Tecs
should have when they are
linked to a user’s profile

A team member did not un-
derstand whether there
should be icons to link Tecs
to a user’s profile

"Should the color be green?"
(Observation, Month 3)

“Is a pin icon needed here?”
(Observation, Month 2)

Indented user in-
teraction: Inter-
pretive differ-
ences on how us-
ers should interact
with the product’s
component

Use: Functionalities
and feature should be
used in a certain way

Count: Instances of
information sharing
should be tracked

A team member did not un-
derstand what users can do
with Tec groups

A team member did not un-
derstand why the Tec count
should increase

“What can users do with Tec
groups?” (Observation, Month
6)

“We understand the use-count
should go up, yes we do not see
why?" (Observation, Month 2)

Table 1. Categorization of semantic boundaries into three domains

Table 2 summarizes our findings in terms of the total number of similar semantic boundaries that oc-
curred for each of the three problem domains over the life of the project. These counts demonstrate that
similar semantic boundaries continued to occur at various times of the project for all three of these
domains.

 Month 1 2 3 4 5 6 7 8 9 10 Total per

domain
Assembling - xxx - xx xxxxxxx xxx xxxxx - - xx 22

Designing - xx xxx - x - xxxxxxx - xxxx - 17

Intended user
interaction

x xxx - xxx x x xx - x x 13

Total per
month

1 8 3 5 9 4 14 0 5 3 52

Table 2. Counts of similar semantic boundaries for three domains over 10-month project;
(x): occurrence of similar semantic boundary; (-): no similar semantic boundary oc-
curred within that month

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 8

In formal terms, our findings therefore suggest the following:

Proposition 1: When agile software methods are utilized for an offshore-outsourced software project,

similar semantic knowledge boundaries related to multiple domains (assembling, de-
signing and intended user interaction) will recur over the life of the project.

Next we look at the specific practices with software prototypes that were utilized when similar seman-
tic boundaries occurred for each these domains.

4.2 Practices with software prototypes in agile software development

To address our research question about why boundaries recur, we examine what practices were utilized
and why team members engaged in these practices. As found in the prior study, three different bridging
practices were used when they faced semantic boundaries: Contrasting (C), Exemplifying (E), and Re-
lating (R). In addition, however, our unexpected finding was that the team members continued to use
the same use practice when boundaries related to a given domain recurred: assembling, designing or
intended user interaction. That is, our overall finding is that similar practices were utilized when similar
semantic knowledge boundaries were encountered (Table 3).

Table 3. Practices for each domain over 10-month project, Contrasting (C), Exemplifying (E),
and Relating (R); Building Prototype (BP); Working Prototype (WP)

More specifically, when similar semantic boundaries related to the Assembling domain were encoun-
tered, team members were more likely to engage in Contrasting BP & WP and Exemplifying in the BP
or WP. For example, when a team member did not understand how the order of pages of a Tec should
be arranged when a page that is linked to a user’s profile is deleted. The team member showed the
current prototype (WP) displaying what was implemented so far. The client recommended opening an-
other requirement (BP). They opened the user story which described how a page of a Tec is deleted.
They then contrasted the current prototype (WP) with a requirement (BP) that described how a page of
a Tec is deleted to compare it to what is displayed in the current implementation. Then the client ex-
plained in an example in the WP: when there are 13 pages of a Tec and 1 page is deleted, other pages
will move up depending on the time when the page was built.

Domain 1 2 3 4 5 6 7 8 9 10

Assembling -
C-BP&WP
E-BP
E-BP

-
R-BP
E-WP

C-BP&WP
E-WP
C-BP&WP
C-BP&WP
E-BP
E-BP
C-BP&WP

C-BP&WP
C-BP&WP
C-BP&WP

C-BP&WP
E-WP
C-BP&WP
E-WP
E-BP

- -
E-WP
C-
BP&WP

Design -
R-BP &E-BP
E-BP

E-WP
E-BP
E-WP

- E-BP -

C-BP&WP
E-WP
C-BP&WP &R-
BP
E-BP&R-BP
C-BP&WP
E-WP
C-BP&WP

-

E-BP
E-BP
C-
BP&WP
E-BP

-

Intended User
Interaction

E-WP & R-WP
R-BP
E-WP&R-WP
R-WP

-
E-WP
C-BP&WP
R-WP&C-BP&WP

E-WP
C-BP&WP &
R-WP

E-WP
E-WP & R-WP

- E-BP E-BP

Month

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 9

Further, team members were more likely to engage primarily in Exemplifying in the BP or WP and
Contrasting BP & WP which were infrequently combined with Relating in the BP when facing semantic
boundaries related to the Designing domain. For example, a team member did not understand under
which circumstances connecting lines have different colors. The developer opened screen shots attached
to the user story displaying many colorful connecting lines. The client used the visual representation of
the screen shot to indicate that there are three possible colors and discusses examples: blue, red and
green lines, each indicating the level of ownership of Tecs. For instance, Tecs connected by a blue line
belong to a user and the user can control the Tecs. He then related the idea to the whole by suggesting
that the developer should "close his eyes and imagine that in the future users can activate or deactivate
a color.” The user can see immediately if there is “a road for other users leading to my Tec here? It
will improve the feeling about surfing here in Tec.com.” The developer then opened the current WP to
contrast a similar already implemented functionality displaying a single connecting line (without color)
with a screen shot of the not yet implemented colorful connecting lines.

Finally, when team members face similar semantic boundaries related to the Intended user interaction
domain, they typically engaged in Exemplifying in the WP and Contrasting BP & WP which were often
combined with Relating in the WP. For example, a team member did not understand what users can do
with a functionality called “Tec groups.” The Scrum Master showed and highlighted a written question
(BP). Then he opened the current prototype (WP) displaying a Tec group in the background to contrast
the question with an already implemented function. The user could enter the Tec group name and select
a language in the current WP. The Scrum Master located the position in the prototype where users can
create a Tec group. Then, the client orally related the concept to the whole. Tec groups are very important
in the system enabling users to meet others who are also interested in a particular topic. He stated: “As
an architect I want to build a house, so I can create a Tec group for that house and invite only the
workers – and share files with them.” Then he also explained that there will be Tec groups where a user
can decide who can join in a Tec group. A user can create a Tec group of FC Basel and invite friends
that can link to the Tec group. In the current system everyone can join a Tec group.

Proposition 2: When agile software methods are utilized for an offshore-outsourced software project,
team members will likely enact the same use practices with software prototypes to
bridge similar semantic knowledge boundaries over the life of the project.

In addition, our data reveal that the client and the vendor did not invest in deeply sharing knowledge.
Instead, the team members shared just enough knowledge to quickly address a semantic boundary at
hand. Our analyses of the interview data that we collected during the project suggest there were three
primary reasons why.

First, software developers worked on one requirement at a time. To complete the requirement, they
learned the information that was necessary to complete the single task at hand instead of gaining a more
comprehensive picture of the whole software product. The client selectively elaborated on the overall
software idea. As a result, it was difficult for vendor employees to understand the whole overall picture
of Tec.com.

“There are misunderstandings that occur... I am aware that the programmer now does something some-
where...one can already see it... for some reason some Tecs are green in the right column. If one had
understood the whole project sincerely, then one shakes the head and says -a moment. And then it be-
comes clear that they have not yet fully understood it. But this is actually not a big difficulty. […] I think
when one sits directly in the same room then one would discuss a lot about the big picture. This could
have the advantage that all participants have a much better understanding where this journey is going
and why something functions the way it does. This would of course also require time […] Would one
bring all team members to the same level of knowledge one must somehow take three months to elabo-
rate on it. And that is simply impossible. And that is why they simply have to trust me, the people there
that I know what I am doing.” [C]

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 10

Second, although vendor employees had daily internal meetings in Vietnam, they did not attempt to
deeply involve the client in knowledge sharing. During the meetings with the client they tried to share
just sufficient knowledge and focus on delivering results. For instance, they did not share detailed tech-
nical information with the client that would take a lot of time. Instead, they focused on delivering the
revised prototype as fast as possible. They also needed additional time to learn novel and modern tech-
nologies that were used in the TechProject, but that they were not familiar with.

“We don't try to talk much about, too much about detail, what we will do, so, to talk about what he need
and what he expects, and we try to deliver.” [SM1]

Third, the software prototype helped client and team members to convey their ideas and problems during
cross-border interactions quickly. In particular, the use of prototypes helped to visualize ideas, examples
and scenarios via screen sharing during virtual meetings. The client had a strong interest in realizing his
ideas fast and aimed to accelerate the development process. The prototype helped him to transform his
abstract ideas into something tangible; developing a prototype with working core functionality as fast
as possible was important. The software prototype was a vital communication device to convey
knowledge quickly.

“[Screen shots] are simply a visual medium and it is simply clear, it is the fastest way. So, when you ask
why, I could also write an A4 page but then I would have to write: Once you click on this bit and at the
top left etc. So, this in words is …, so I am simply faster, when I rapidly take a picture and then draw
circles in Photoshop with a pencil and make and arrow and keyword and then the issue is clear. Mean-
while, there are even tickets where there is simply a screenshot and not even some describing text. [C]

Our findings therefore provide support for the observation previously reported by Majchrzak et al.
(2012). That is, team members may seek to transcend, rather than traverse, knowledge boundaries.
Stated more formally:

Proposition 3: When agile software methods are utilized for an offshore-outsourced software project,
team members will likely enact use practices with software prototypes to transcend,
rather than traverse, semantic knowledge boundaries over the life of the project.

5 Contribution and Implications
Our objective for this study was to investigate a phenomenon that emerged from our initial observations
of the virtual team meetings for an outsourced software development project: i.e., the recurrence of
similar semantic knowledge boundaries over the life of an outsourced agile software project when soft-
ware prototypes are used. While previous outsourcing scholars have acknowledged the importance of
bridging knowledge boundaries (Tiwana, 2004, Dibbern et al., 2008, Levina and Vaast, 2008, Vlaar et
al., 2008), what has not been addressed in the existing literature was how practices with software proto-
types are used to resolve interpretive differences over time. To the best of our knowledge this study is
one of the first to explore this “temporal dimension of IT-mediated team behaviors (Shen et al., 2014).”
Taking a phenomenon-based approach to analyze our rich, in-depth case study data enabled us to take
into account complex, interrelated occurrences over time (von Krogh et al., 2012) and develop three
propositions for future research.

Our first proposition is based on the emergent finding that similar semantic knowledge boundaries re-
lated to multiple domains (Assembling, Designing and Intended user interaction) will recur over the life
of the project. This finding enriches the semantic boundary concept in the agile software development
context. We provide a more fine-grained and contextualized coding example for each of these domains
specific to the Techproject. However, we believe that our categorization approach will be applicable for
other software projects, and that our first proposition can therefore be tested in similar and different
project contexts.

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 11

Our second proposition is based on our observation that team members using agile software methods
will enact the same practices with one or two software prototypes types (BP, WP) over the life of a
project when they encounter similar semantic knowledge boundaries. This finding is consonant with
previous findings where use practices were defined as “recurrent, materially bounded and situated ac-
tion.” (Orlikowski, 2002 p. 256) Our results provide evidence that team members use the software pro-
totype as a “learning vehicle” (Floyd, 1984) to visualize thoughts, ideas or difficulties. That is, our
results also suggest that team members preferred to learn by specific examples and comparisons by
engaging in practices of exemplifying and contrasting. Software prototypes helped them to visualize
specific scenarios and examples for one particular requirement. As cautioned by Naur (1984 p. 290), the
effectiveness of a learn-by-example approach depends on “making the right generalization from the
special cases shown in the examples.“ The team members found it challenging to generalize from a
single requirement to the broader, overall idea of the software product. While focusing on specific ex-
amples helped team members to quickly bridge a particular boundary at hand, they continued to have
difficulties applying knowledge to other requirements in the long run when they faced similar semantic
boundaries. The practices transformed the software prototype as a boundary object into a “partial and
temporary bridge” (Trompette and Vinck, 2009, Yakura, 2002) and enabled “speed and learning in the
short term” (Kellogg et al., 2006 p.42). The team members engaged in activities that resulted in “inter-
mediary scaffolds” to quickly create new versions of the artifact (Majchrzak et al., 2012). Thus, it is
important to consider how the artifact is used in practice (e.g., Levina and Vaast, 2005, Nicolini et al.,
2012, Seidel and O'Mahony, 2014, Barrett and Oborn, 2010).

Our findings therefore suggest that the reliance on agile software methods for an offshored custom de-
velopment project will likely result in use practices for transcending, rather than traversing semantic
knowledge boundaries. Our third proposition therefore also provides initial support for the assumption
by Majchrzak et al. (2012) that continuously evolving, incomplete, fluid objects (such as software pro-
totypes) support transcending practices. Thus, team members across boundaries share just sufficient
knowledge to be able to collaborate without a synchronized, common understanding (Majchrzak et al.,
2012, Kellogg et al., 2006, Faraj and Xiao, 2006, Schmickl and Kieser, 2008). In particular, our findings
provide new insights on the concept of transcending (Majchrzak et al., 2012) in the context of agile
software development. That is – while the engagement in transcending practices helped team members
to quickly develop the software prototype in the short-term, it also allowed similar boundaries to recur
in the long term. On the other hand, this emergent finding contradicts prior researchers that have argued
that agile software development practices with frequent interactions and immediate feedback facilitate
learning (e.g., Highsmith, 2013, Cao and Ramesh, 2007). If interpretive differences are identified and
solved after immediate feedback, similar boundaries would not recur over the project’s life. In our study,
we indicate that similar boundaries can re-occur even in agile software development.

We believe our findings also provide valuable guidance for practitioners. First, our study provides strong
evidence that team members can continually be challenged by interpretive differences over the life of
an outsourced project using agile software development methods, and that team members are likely to
enact similar practices to address them. Our categorizations of semantic knowledge domains and use
practices that involve prototypes could be used to identify what boundaries are recurring and why. Man-
aging risks in offshore development projects is necessary to achieve the potential gains of outsourcing
and include risks resulting from different interpretations and perceptions (Kliem, 2004).

Second, our finding suggest that in order to take management actions, it is important to consider the
trade-offs when using software prototypes in practice. When focusing on sharing “just enough”
knowledge, team members may solve a boundary at hand quickly; yet, engaging in deeper knowledge
sharing may help team members to ultimately identify underlying causes of such boundaries. Since agile
work practices require fast responses to meet tight schedules and to frequently present work-in-progress
to the client (Fowler and Highsmith, 2001), other management actions may need to be taken if sharing
“just enough” knowledge for each requirement separately for a new outsourced IS application is a short-
term approach that will not be valued for a long-term client-vendor arrangement.

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 12

5.1 Limitations and future research

Our study has several limitations. First, our findings are based on a single case study of an outsourced
software project with a single client that was geographically distributed from the developers. Further,
the software project involved developing a certain type of application: an online-based, interactive user
application. While our triangulated, longitudinal data set and the internal replication opportunities al-
lowed us to gain valuable insights from a single case study (Langley, 1999) and to develop three prop-
ositions, future studies are needed to test our propositions with data from other agile development pro-
jects, as well as in non-agile project contexts, as well as in other offshore contexts and domestic contexts.

Further, we reveal that similar interpretive differences continuously challenged the team members.
While software prototypes helped to address immediate interpretive differences, “solving” recurrent
problems such that similar semantic boundaries do not recur may require different practices with soft-
ware prototypes. Thus, future research is needed to improve our understanding about how software pro-
totypes need to be used to bridge interpretive differences in the short-and long-run.

In this study, we found that similar interpretive differences recurred and that team members used soft-
ware prototypes to address them. However, future research is needed to investigate whether repeatedly
bridging semantic boundaries with the same use practices that yield “temporary bridges” is more or less
beneficial than engaging in practices for traversing semantic boundaries for a given IS outsourcing pro-
ject. In addition, other contexts need to be investigated—including those in which team members expect
to be engaged in a long-term client-vendor relationship and therefore seek to engage in deeper
knowledge sharing practices.

Appendix 1: Similar semantic boundaries for 3 domains

Assembling Designing Intended user interaction
Sequence Display Color Form Use Count

A team member did not understand…
…how the order
of pages of a
Tec changes
when a page that
is linked to a
user’s profile is
deleted (Month
2)

…what a user
can see when
clicking on
Tecs and pro-
files in a column
(Month 2)

…what the de-
sign looks like
when a Tec is
colored as
“shadowed” and
if this applies to
profiles and sub-
ordinate Tecs as
well (Month 2)

…whether there
should be icons
to link Tecs to a
user's profile
(Month 2)

…under which
circumstances a
Tec title is still
available for a
user (Month 1)

…under which
circumstances
the use count of
a Tec increases
(Month 2)

…how the Tec
with the lowest
page number
should be or-
dered (Month 2)

…the rules that
describe under
which circum-
stances which
Tecs or profiles
should be seen
(Month 4)

..which color a
Tec should have
when the Tec al-
ready exists in
the same column
(Month 3)

…whether the
new design will
have icons for
users to click on
(Month 3)

…how a user
can select an ex-
isting weblink
(Month 4)

…how to count
Tecs that are se-
lected by a user
(Month 2)

…how switch-
ing between
pages of unse-
lected Tecs
pages affect
their order in the
columns (Month
5)

…under which
circumstances
which back-
ground should
be shown
(Month 4)

…which color
Tecs should
have when they
are linked to a
user’s profile
(Month 3)

…how the new
layout for pri-
vate profiles dif-
fers from the old
one, i.e. what
changes need to
be made (Month
5)

…why the term
changed from
“group profile”
to “Tec groups”
(Month 4)

…the reason for
why the Tec
count should in-
crease (Month 2)

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 13

Appendix 2: Detailed Example for Designing Domain (Color)
A software developer initially faced a boundary related to color in the 3rd month of the project when he
was not clear about which color a Tec should have when the Tec already exists in the same column.
While the developer visually pointed to the example in the WP, the client used the WP to explain what
color the Tec should have in this situation. Another semantic boundary that was similar to the previous
one then occurred in the same month when the team member worked on another requirement. For ex-
ample, seven days after the prior episode, a developer was not clear about which color a Tec should
have when it is linked to a user’s profile. The developer opened the current prototype (WP) to demon-
strate a scenario of a Tec that is linked to a user’s profile. The client then explained using the WP that
Tecs linked to a user profile are green and added a similar comment to the user story. Yet, a similar
semantic boundaries – also related to colors – re-occurred several months later. For example, a team
member did not understand under which circumstances connecting lines have certain colors. The devel-
oper re-used the screen shots (BP) from an earlier episode to formulate questions about the groups and
private profiles (e.g., “Why two lines here?”). The developer pointed to the screen shot to ask about the
behaviour of connecting lines.Then the developer opened the current prototype (WP) displaying what
he has implemented so far and contrasted it with the not yet implemented requirement represented by
the screen shot (BP). The client explained that the private profile is the only element that is shown by
all three colored lines since “it is always visible to everybody, but at the same time it belongs to the
user.” Further similar semantic boundaries (i.e., color) re-occurred in the same month.

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 14

References
Awad, M. (2005). A comparison between agile and traditional software development methodologies.

School of Computer Science and Software Engineering. Crawley, Perth, University of Western Aus-
tralia.

Baba, M. L., J. Gluesing, H. Ratner, and K. H. Wagner (2004). "The contexts of knowing: Natural
history of a globally distributed team." Journal of Organizational Behavior 25 (5), 547-587.

Barrett, M. and E. Oborn (2010). "Boundary object use in cross-cultural software development teams."
Human Relations 63 (8), 1199-1221.

Bechky, B. A. (2003). "Sharing meaning across occupational communities: The transformation of un-
derstanding on a production floor." Organization Science 14 (3), 312-330.

Berczuk, S. (2007). "Back to basics: The role of agile principles in success with a distributed scrum
team." In: Proceedings of the Agile Conference. Washington: DC, pp. 382-388.

Bergman, M., J. L. King and K. Lyytinen (2002). "Large-scale requirements analysis revisited: The need
for understanding the political ecology of requirements engineering." Requirements Engineering 7
(3), 152-171.

Boland, R. J., Jr. and R. V. Tenkasi (1995). "Perspective Making and Perspective Taking in Communi-
ties of Knowing." Organization Science 6 (4), 350-372.

Cao, L. and B. Ramesh (2007). "Agile software development: Ad hoc practices or sound principles?" IT
Professional 9 (2), 41-47.

Carlile, P. R. (2002). "A pragmatic view of knowledge and boundaries: Boundary objects in new product
development." Organization Science 13 (4), 442-455.

Carlile, P. R. (2004). "Transferring, translating, and transforming: An integrative framework for man-
aging knowledge across boundaries." Organization Science 15 (5), 555-568.

Carmel, E. and P. Tjia (2005). Offshoring information technology: sourcing and outsourcing to a global
workforce. Cambridge, UK: Cambridge University Press.

Corbin, J. and A. Strauss (1990). Basics of qualitative research: Grounded theory procedures and tech-
niques. Thousand Oaks, CA: Sage Publications.

Cramton, C. D. (2001). "The mutual knowledge problem and its consequences for dispersed collabora-
tion." Organization Science 12 (3), 346-371.

Damian, D. E. and D. Zowghi (2003). "RE challenges in multi-site software development organisa-
tions." Requirements Engineering 8 (3), 149-160.

Danait, A. (2005). "Agile offshore techniques - a case study", In: Proceedings of the Proceedings of the
Agile Development Conference. Denver: CO, pp. 214-217.

Dibbern, J., J. Winkler and A. Heinzl (2008). "Explaining variations in client extra costs between soft-
ware projects offshored to India." MIS Quarterly 32 (2), 333-366.

Dingsøyr, T., S. Nerur, V. Balijepally and N. B. Moe (2012). "A decade of agile methodologies: To-
wards explaining agile software development." Journal of Systems and Software 85 (6), 1213-1221.

Dougherty, D. (1992). "Interpretive barriers to successful product innovation in large firms." Organiza-
tion Science 3 (2), 179-202.

Dyba, T. and T. Dingsoyr (2009). "What do we know about agile software development?" Software,
IEEE 26 (5), 6-9.

Faraj, S. and Y. Xiao (2006). "Coordination in fast-response organizations." Management Science 52
(8), 1155-1169.

Floyd, C. (1984). A systematic look at prototyping. Approaches to prototyping. Ed. by R. Budde, K.
Kuhlenkamp, L. Mathiassen and H. Züllighoven. Berlin: Springer, pp. 1-18.

Fowler, M. and J. Highsmith (2001). "Agile methodologists agree on something." Software Develop-
ment 9 (8), 28-32.

Gorschek, T. and C. Wohlin (2006). "Requirements abstraction model." Requirements Engineering 11
(1), 79-101.

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 15

Henderson, K. (1991). "Flexible sketches and inflexible data bases: Visual communication, conscription
devices, and boundary objects in design engineering." Science, Technology & Human Values 16 (4),
448-473.

Herbsleb, J. D. and D. Moitra (2001). "Global software development." Software, IEEE 18 (2), 16-20.
Highsmith, J. (2013). Adaptive software development: a collaborative approach to managing complex

systems. Boston, MA: Addison-Wesley.
Hull, E., K. Jackson and J. Dick (2011). Requirements Engineering. 3rd Ed. London: Springer Science

& Business Media.
Jarvenpaa, S. L. and D. E. Leidner (1998). "Communication and trust in global virtual teams." Journal

of Computer‐Mediated Communication 3 (4), 791-815.
Kautz, K., K. Kuhlenkamp, and H. Züllighoven (1992). Prototyping–An Approach to Evolutionary Sys-

tem Development. Berlin: Springer.
Kellogg, K. C., W. J. Orlikowski and J. Yates (2006). "Life in the trading zone: Structuring coordination

across boundaries in postbureaucratic organizations." Organization Science 17 (1), 22-44.
Kliem, R. (2004). "Managing the risks of offhore IT development projects." Information Systems Man-

agement 21 (3), 22-27.
Kotlarsky, J., H. Scarbrough and I. Oshri (2014). "Coordinating expertise across knowledge boundaries

in offshore-outsourcing projects: The role of codification." MIS Quarterly (forthcoming).
Kruchten, P. (2001). "Agility with the RUP." Cutter IT Journal 14 (12), 27-33.
Langley, A. (1999). "Strategies for theorizing from process data." Academy of Management Review 24

(4), 691-710.
Levina, N. and E. Vaast (2005). "The emergence of boundary spanning competence in practice: impli-

cations for implementation and use of information systems." MIS Quarterly 29 (2), 335-363.
Levina, N. and E. Vaast (2008). "Innovating or doing as told? Status differences and overlapping bound-

aries in offshore collaboration." MIS Quarterly 32 (2), 307-332.
Lyytinen, K. and M. Newman (2008). "Explaining information systems change: a punctuated socio-

technical change model." European Journal of Information Systems 17 (6), 589-613.
Majchrzak, A., A. Malhotra, and R. John (2005). "Perceived individual collaboration know-how devel-

opment through information technology–enabled contextualization: evidence from distributed
teams." Information Systems Research 16 (1), 9-27.

Majchrzak, A., P. H. More and S. Faraj (2012). "Transcending knowledge differences in cross-func-
tional teams." Organization Science 23 (4), 951-970.

Meso, P. and R. Jain (2006). "Agile software development: adaptive systems principles and best prac-
tices." Information Systems Management 23 (3), 19-30.

Naur, P. (1984). Comments on "On the Psychology of Prototyping" by Anker Helms Jörgensen. Ap-
proaches to Prototyping. Ed. by R. Budde, K. Kuhlenkamp, L. Mathiassen and H. Züllighoven.
Springer, pp. 290-291.

Nerur, S. and V. Balijepally (2007). "Theoretical reflections on agile development methodologies."
Communications of the ACM 50 (3), 79-83.

Nicolini, D., J. Mengis and J. Swan (2012). "Understanding the role of objects in cross-disciplinary
collaboration." Organization Science 23 (3), 612-629.

Opie, C. and P. J. Sikes (2004). Doing educational research. London, UK: SAGE Publications.
Orlikowski, W. J. (2002). "Knowing in practice: Enacting a collective capability in distributed organiz-

ing." Organization Science 13 (3), 249-273.
Rowen, R. B. (1990). "Software project management under incomplete and ambiguous specifications."

IEEE Transactions on Engineering Management 37 (1), 10-21.
Sarker, S. and S. Sahay (2004). "Implications of space and time for distributed work: an interpretive

study of US–Norwegian systems development teams." European Journal of Information Systems 13
(1), 3-20.

Sarker, S., S. Sarker, A. Sahaym and N. Bjørn-Andersen (2012). "Exploring value cocreation in rela-
tionships between an ERP vendor and its partners: A revelatory Case study." MIS Quarterly 36 (1).

Winkler et al. /IS Strategy and Governance

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 16

Schmickl, C. and A. Kieser (2008). "How much do specialists have to learn from each other when they
jointly develop radical product innovations?" Research Policy 37 (6), 1148-1163.

Schwaber, K. and M. Beedle (2002). Agile software development with Scrum. Upper Saddle River, NJ:
Prentice Hall.

Seidel, V. P. and S. O'Mahony (2014). "Managing the Repertoire: Stories, Metaphors, Prototypes, and
Concept Coherence in Product Innovation." Organization Science 25 (3), 691-712.

Shen, Z., K. Lyytinen and Y. Yoo (2014). "Time and information technology in teams: a review of
empirical research and future research." European Journal of Information Systems, 1-27.

Sørensen, E. (2009). The materiality of learning: Technology and knowledge in educational practice.
New York City, NY: Cambridge University Press.

Star, S. L. (2010). "This is not a boundary object: Reflections on the origin of a concept." Science,
Technology & Human Values 35 (5), 601-617.

Star, S. L. and J. R. Griesemer (1989). "Institutional ecology, translations' and boundary objects: Ama-
teurs and professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39." Social Studies of
Science 19 (3), 387-420.

Tiwana, A. (2004). "Beyond the black box: knowledge overlaps in software outsourcing." IEEE Soft-
ware 21 (5), 51-58.

Trompette, P. and D. Vinck (2009). "Revisiting the notion of Boundary Object." Revue d'anthropologie
des connaissances 3 (1), 3-25.

Vlaar, P. W., P. C. van Fenema and V. Tiwari (2008). "Cocreating understanding and value in distributed
work: How members of onsite and offshore vendor teams give, make, demand, and break sense."
MIS Quarterly 32 (2), 227-255.

von Krogh, G., C. Rossi-Lamastra and S. Haefliger (2012). "Phenomenon-based research in manage-
ment and organisation science: When is it rigorous and does it matter?" Long Range Planning 45 (4),
277-298.

Winkler, M., T. Huber and J. Dibbern (2014). "The Software Prototype as Digital Boundary Object – A
Revelatory Longitudinal Innovation Case." Thirty Fifth International Conference on Information
Systems (ICIS). Auckland: NZ.

Yakura, E. K. (2002). "Charting time: Timelines as temporal boundary objects." Academy of Manage-
ment Journal 45 (5), 956-970.

Yin, R. K. (2009). Case study research: Design and methods. Thousand Oaks. CA: Sage Publications.

