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Abstract  

In order to adopt sustainable practices and strategies, organizations and individuals need to under-

stand the environmental impact of their behavior and the knowledge about successful resource con-

servation strategies. Information Systems research and real-time feedback systems in particular can 

help to bridge this "environmental literacy gap”. In previous work, we presented an IS artifact that 

presents consumers with behavior-specific information on their energy and water consumption in real 

time. We found that this approach reduces energy and water consumption by 22%. In this work-in-

progress paper, we address the open question of effect persistence in the long term. We analyze 

17,612 data points collected in a 12-month field study from 50 households. First analyses indicate that 

the effect remains stable over time. In line with literature on “data push” systems, we argue that feed-

back systems should not require an additional step of user action to access the feedback which may be 

a barrier to longer effect persistence of information systems. 

  

Keywords: Energy and water conservation, real-time feedback system, effect persistence, data push 

system 
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1 Introduction 

The growing demand for energy and water fuels a variety of environmental and geopolitical problems, 

creating a growing policy interest in resource conservation. Aside from technical parameters, behavior 

has been identified as the most important factor governing energy consumption. Most individuals are 

generally motivated to engage in pro-environmental behavior as they inherently care about the envi-

ronment (Naderi, 2011). However, at the same time, many tend to have a poor understanding of how 

much energy (Attari et al., 2010; Gardner and Stern, 2008) and water they use (Attari, 2014) in their 

daily lives: Individuals regularly underestimate their personal resource consumption, have fundamen-

tal misconceptions of the relative resource intensity of different aspects of their life, and often mis-

judge the effectiveness of resource conservation strategies.  

While many firms have already implemented environmental management systems, households still 

lack the tools to monitor and improve their energy or water consumption. As of today, most house-

holds continue to receive yearly, quarterly, or at best monthly utility bills for their electricity, gas, and 

water consumption. On those bills, the quantity of resources consumed is aggregated over the entire 

billing period and on the household level. This makes it virtually impossible for people to understand 

the contribution of individual appliances, to make the link between specific actions and its environ-

mental impact, and to focus on environmentally significant action that make an actual difference 

(Gardner and Stern, 2008). Just like larger organizations, in order to adopt sustainable practices and 

strategies, households necessitate “new data regarding environmental impacts, new information about 

causes and effects, and knowledge sharing about what works, what doesn’t, and why.“ (Melville, 

2010). This is a large missed opportunity: The residential sector accounts for approximately 25% 

(resp. 22%) of total primary energy consumption in the EU-27 (resp. the U.S.) (European Environment 

Agency, 2012; U.S. Department of Energy, 2012).  

The ongoing progress of information and communication technology (ICT) and in particular the ongo-

ing large-scale deployment of smart meters open up new avenues to effectively bring meaningful and 

actionable resource consumption information to the attention of individuals. By 2020, 195 million 

electricity smart meters will be deployed in the EU alone (European Commission, 2014). This corre-

sponds to a roll-out that covers 72% of utility consumers in the EU. 

While the deployment of ICT is an important and necessary step forward to empower consumers, 

these technologies are still struggling with issues of acceptance, conservation impact, and cost-

effectiveness. The most widespread approach of displaying smart metering information to residential 

consumers today is the use of in-home displays (IHDs) and web portals. While the information is dis-

played in a much timelier manner than on traditional utility bills, electricity use is still aggregated on 

the household level. These approaches thus leave the burden of identifying high-impact domains or 

energy guzzlers with the consumer. In the field, the impact of this approach does not live up to the 

high hopes that had originally been placed on them (Darby, 2006): Recent large-scale smart metering 

trials document electricity savings between 3 and 5% (Degen et al., 2013; McKerracher and Torriti, 

2013; Schleich et al., 2013). 

For smart metering and related feedback technologies to fully unfold their full potential, it will take a 

“concerted effort by researchers, policymakers, and businesses to do the "engineering" work of trans-

lating behavioral science insights into scaled interventions, moving continuously from the laboratory 

to the field to practice.” (Allcott and Mullainathan, 2010). Information Systems (IS) research at the 

intersection of human behavior, organizations, and technology seems particularly amenable to lead 

these concerted multidisciplinary efforts. IS research “can make an important contribution to 

knowledge […] to the creation and evaluation of systems that break new ground in environmental re-

sponsibility” (Melville, 2010). In this context, a plethora of studies and meta-analyses have investigat-

ed which attributes of an IS artifact facilitate the adoption and the effectiveness of these technologies. 

Technology features that were identified as relevant for the effectiveness of feedback information by 
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meta-studies (Darby, 2006; Ehrhardt Martinez et al., 2010; Fischer, 2008) include frequency, duration, 

timeliness, content, breakdown, medium and way of presentation, and comparisons.  

In previous work, we have presented an IS artifact that was designed with these features in mind, aim-

ing at substantially increasing the impact of feedback systems on energy conservation. In (Tiefenbeck 

et al., 2013), we presented an IS artifact that provides individuals with real-time feedback on energy 

and water consumption of a specific behavior and already during the resource consumption. We chose 

showering as a common and highly resource-intense activity: In less than 5 minutes, the average per-

son uses 44 liters of hot water, which requires at least 1.6 kWh to heat it up (Tiefenbeck et al., forth-

coming). In a two-month study with 697 Swiss households, we were able to demonstrate that this kind 

of feedback system can have a large impact on behavior and resource consumption: Participants re-

duced both their energy and their water consumption by 22% on average. This large treatment effect 

also lead to large absolute savings: Projected to one year, the average person reduces her energy con-

sumption by 200 kWh and her water consumption by 3900 liters of drinking water – plus the consider-

able energy losses of the heating system. The feedback system alone achieves per-household energy 

savings that are similar in high as the transition from incandescent light bulb LED lighting systems.   

Aside from the effect size, the pivotal question in the evaluation of feedback technologies is the persis-

tence of the saving effects. It is still unclear whether behavior changes induced by information systems 

are stable or whether individuals fall back into their old habits after a short time. In order to be accept-

ed as feasible policy and cost-effective solution for energy conservation, information systems re-

searchers need to prove that the impact of such technologies is not just short-lived, but that these sys-

tems create a lasting impact on user behavior. In this work-in-progress paper, we present a follow-up 

study to (Tiefenbeck et al., forthcoming) which investigates the question of long-term persistence of 

saving effects for real-time feedback systems. 

 

2 Related work 

Feedback interventions have proven themselves as a cost-effective and scalable instrument to reduce 

residential energy consumption (Allcott and Mullainathan, 2010; Allcott and Rogers, 2014).  

One of the key questions in the context of the savings achieved is their persistence. A meta-study car-

ried out by (Ehrhardt Martinez et al., 2010) concludes that the vast majority of savings from feedback 

interventions can be attributed to behavior change, not to investments into more energy-efficient tech-

nologies or building materials. As a result, the persistence of the reduction depends on the persistence 

of the change in everyday practices. In a feedback study on water consumption, (Fielding et al., 2013) 

find that once the intervention ends, the effect eventually dissipates and households return to their pre-

intervention levels of consumption. In a similar vein, in a study with 300 Dutch households on feed-

back provided on in-home displays, (van Dam et al., 2010) find that the savings persist neither in the 

households who return the monitor after the initial four-month study period, nor in those who continue 

using the feedback device.  

By contrast, (Ayres et al., 2009) report persistent conservation effects throughout a seven- resp. 

twelve-month study duration. (Raw and Ross, 2011) also report persistent conservation gains for elec-

tricity smart meters to the end of the AECON trial (duration ranging between one and two years). 

(Foster and Mazur Stommen, 2012) reviewed various pilot studies in the U.S., the U.K. and Ireland 

and find that with the exception of one trial, all studies that tested for effect persistence report persis-

tent savings over the course of the pilots (up to 21 months).  

(Allcott and Rogers, 2014) present an analysis that analyses long-term efficiency campaigns compris-

ing 234,000 households over four or five years. Their focus of analysis, however, are campaigns using 

periodic ‘home energy reports’, not feedback technologies that provided users with information in a 
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timely manner. Nevertheless, also with respect to the sheer sample size and duration of the study, the 

results are of interest.  The authors find that saving effects of such paper-based campaigns are much 

more persistent than previously assumed in cost-benefit analyses. Although the immediate conserva-

tion response to the first home energy report is followed by a relatively quick decay of the effect, the 

authors observe cyclical, yet diminishing patterns of action and backsliding as response to subsequent 

reports. As the intervention continues over time, the effects become more and more persistent. If the 

intervention is discontinued after two years, the effects only decay with a rate of 10-20%. The authors 

conclude that the cost-effectiveness of these programs has been dramatically underestimated in the 

past. In the light of the discrepancy in the findings of effect persistence, Boyd (2014) contrasts the ap-

proaches of “data push” versus “data pull". This debate had also been brought up by other authors 

(Foster and Mazur Stommen, 2012; Froehlich et al., 2010). All argue that most web portals and IHDs 

require an additional step of user action to access the feedback information (“data pull”). This may be 

a barrier to longer effect persistence. The authors thus conjecture that the future of real-time feedback 

lies in systems with data push. 

The aforementioned studies are based on feedback technologies that present information to consumers 

that is aggregated on the household level.  Yet it has also been shown that feedback works best when it 

is delivered frequently, timely, clearly, and on specific actions which individuals can easily influence 

(Ehrhardt Martinez et al., 2010).  So far, most IT artefacts with a behavior-specific focus presented in 

academic literature still have not overcome prototype status. Taking the example of devices promoting 

water conservation, we find indeed number of innovative studies presenting different concepts for data 

visualization to promote sustainable behavior in this domain, in most cases, in the shower. Examples 

include (Arroyo et al., 2005; Kappel and Grechenig, 2009; Kuznetsov and Paulos, 2010; Laschke et 

al., 2011). However, all these systems concentrate on establishing a proof of concept/operation and 

interface design and share the shortcomings of a very limited number of study subjects, lack of verifi-

able research hypotheses, or, in the case of (Willis et al., 2010), lack a clean research design.  

 

3 Methodology 

3.1 Overview 

The study presented here is a 12-month follow-up study of an earlier 2-month study with 697 Swiss 

households carried out by ETH Zurich, by the University of Lausanne and by the University of Bam-

berg with ewz, an electricity company in Zurich (December 2012 – February 2013). In the 2-month 

study, three different and specialized study versions of the Amphiro smart shower meters had been 

deployed randomly among the participants to investigate the impact of the IS artifact in a randomized 

controlled trial. All participating households were customers of the local utility company ewz and had 

opted into the study. In order to simplify an accompanying survey, only one- and two-person house-

holds were eligible to participate. 

Aside from the shower data collected, participants had also filled out surveys before and after the 

study. Those surveys collected mainly demographic information, assessed personality and attitudes 

(before the intervention), and participants’ experience with the device (after the intervention). In that 

earlier study, we were able to show that the real-time feedback provided reduced energy and water 

consumption by 22% (Tiefenbeck et al., forthcoming). The study presented here is a follow-up study 

that investigates the effectiveness of the real‐time feedback in the long run. 
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3.2 IS artifact used to measure, display, and store information 

The IS artifact used for the purpose of this study is the amphiro a1 smart shower meter developed by 

Amphiro AG, a spinoff company of ETH Zurich. The device measures and stores time series data on 

shower behavior and provides users with real-time feedback at the point of consumption, directly in 

the shower. The smart shower meter integrates between the shower hose and the handheld shower-

head. In the development of the artifact, particular attention was paid to facilitate the installation and 

use of the device in order to reduce barriers for adoption and the need for maintenance. As a result, the 

device can be installed by the users without any tools in less than a minute. Furthermore, the shower 

meter is energy-autarkic: A built-in micro-generator harvests energy from the water flow, supplying 

the device with the power required for its processing unit and display. This self-powering concept 

eliminates the need for batteries and allows tracking behavior over extended periods of time. During 

each shower, the device continuously measures the water temperature and generator speed. Based on 

these data, water use, energy use and energy efficiency class of the current shower are permanently 

calculated. The standard device displays real-time feedback on water use (in tenths of liters) and ener-

gy consumption (in Wh / kWh) from the beginning of the shower along with water temperature and an 

energy efficiency class; the latter is visualized by a letter ranging from A to G and accompanied by a 

polar bear animation. The device can store data of up to 507 showers in standard mode and 205 show-

ers when configured to specialized study operation settings. Showers can be interrupted to three 

minutes (e.g., for lathering up); if the shower is continued after a short interruption, the device resumes 

its operation. If no water flows through the device for more than three minutes, the final values are 

stored as a shower and the device restarts from zero next time the water is turned on. Water extractions 

below five liters are not considered as showers and are not stored. The rationale is that most of these 

small water extractions serve other purposes (e.g., for flower watering or bathtub cleaning).  

 

3.3 Participants 

Upon completion of the 2-month study, all participants who had sent in their study devices for the data 

readout received standard devices with regular firmware (capable of storing up to 507 showers instead 

of 205). The devices were shipped to the households in March 2013. Participants were not informed 

that they might be asked again to ship back their shower meter one year later.  

Beginning of April 2014, they were contacted via email inviting them to participate in the long-term 

study. They were informed that participation in the study involved that they ship back their smart 

shower meter once more (free of charge) for the data readout and to fill out another online survey.  

Eighty households responded to the study call and filled out the survey. Based on the survey respons-

es, fifty participating households were chosen according to the following criteria: 
 

 Willingness to return the device for a read-out 

 No long absences during the long-term study 

 Must not have moved during the study 

 Must not have replaced the amphiro a1 device 

 Household composition must not have changed 

 Agreement with the data privacy protection statement 

 Completion of the questionnaire  

The main goal of the survey was to filter out households that did not fulfil the criteria listed above. In 

addition, the survey also assessed technology affinity of the participants. This new part was aimed at 

detecting whether only tech savvy people participated in the study, which would bias results. Finally, 
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the survey asked participants the most important question in the survey: whether they were willing to 

send the device back for a new data readout.  

 

3.4 Data collection and processing 

A total of 50 devices fulfilled all the requirements and the devices and shipped back their shower me-

ters for data readout. After the readout, participants received their devices back. Altogether, data of 

17,612 showers were collected during 12 months from 50 households. 19 out of those 50 households 

had been in the control group of the 2-month study, 31 of them were treatment households who had 

received real-time feedback also during the two-month study. In addition to the 12-month datasets col-

lected for the purpose of this study, the 2-month datasets from those households are also available. The 

full duration of the study thus spans from December 2012 to April 2014. Between the 2-month study 

and the 12-month study, one month of data is missing (data readout for the 2-month study and two-

way shipping). 

The data readout was carried out using a dedicated optical readout terminal with a webcam and a self-

written readout application. The readout process is described in detail in (Tiefenbeck et al., 2013). 

Once the readout process was completed, the data were inspected for sanity and outliers. Corrupted 

data can easily be identified based on the flow rate. Typical values range between 5 and 15 liters / mi-

nute. In a second step, each dataset was analyzed for outliers: For each household, the temperature and 

volume mean were calculated; data points that were more than two standard deviations above or below 

the mean were filtered out. However, our analysis shows no significant difference between the results 

from filtered and non-filtered data. The results are thus robust and not driven by outliers.  

3.5 Data analysis 

The study aims to investigate the stability of the real-time feedback effects over longer period of time 

(one year). Before we analyze the long-term shower behavior of the 50 households and compare it 

with the treatment period from the short-term study, we assess whether the participants of the long-

term study are significantly different from the initial pool of participants who completed the short-term 

study. The goal is to determine whether the results of the long-terms study may be distorted by self-

selection biases.  

In the first step, the study therefore evaluates whether the subset of long-term participants is signifi-

cantly different from the pool of short-term participants. This is performed by running t-tests on 51 

parameters. These parameters comprise all characteristics that were identified as predictors of shower 

behavior or conservation impact in the two-month study. These include water consumption per shower 

during the baseline period of the 2-month study, shower water temperature, household demographics, 

personality, environmental attitude, initial intention to conserve energy, and perception of the device 

(after the two-month study).  

We find that long-term study participants do not significantly differ from the short-term sample in 50 

out of the 51 parameters characteristics investigated. In particular, the average baseline water con-

sumption is statistically the same (MST = 44.4 liters, SDST = 27.5 liters, MLT = 47.2 liters, SDLT = 

24.3 liters, p=0.5407). Of all 51 parameters analyzed, the two groups only differ in a single parameter: 

They perceived the device as significantly more interesting than the treatment group members of the 

short-term study – what is not surprising given that the control group’s device only display water tem-

perature. This parameter was measured as one of 14 items in a semantic differential with 7-point 

scales between two semantic poles (MST = 1.07, SDST = 1.15, MLT = 1.61, SDLT = 0.80, p = 

0.0012). This parameter, however, was not a significant predictor of the conservation effect in the 

short-term study. Overall, while caution is warranted with the self-selective nature of the recruitment 
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process, we do not find any evidence that the subsample that opted into the long-term study signifi-

cantly differs from the larger pool of short-term study participants in any important dimension. 

 

3.6 Qualitative analysis – day-by-day means for water volume per shower 

The main analysis takes day-by-day means of water volume per shower as a first step to determine 

whether the treatment effect from the short-term study is persistent after a year of continuous feed-

back. Figure 1 shows raw data with day-by-day means of shower volume. The data for this graph are 

calculated by averaging all showers for each individual day in both short- and long-term studies. Only 

31 households that were in the treatment groups were considered. The gap in the figure, between the 

60th and 90th day, is the period when short-term data was readout and when devices were sent back to 

the participants. The data points on the left (blue) are the data of the short-term study and the data on 

the right (red) are from the same participants but in the long-term study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Day-by-day means of water volume of the per shower of the 31 treatment group 

households during the intervention period two month study (in blue) and during the 

subsequent 12-month study (in green) 

Table 1 presents the results of a simple preliminary analysis for a first quantitative impression. It com-

pares water and energy use and average water temperature per shower in with the 12-month study 

(April 2013 – April 2014) with the consumption of the treatment households during the intervention 

period of the 2-month study (after the baseline period of 10 showers). The average water consumption 

per shower in the 12-month period (40.1 liters) is similar to the treatment group’s consumption in the 

2-month study (40.8 liters). The difference between those two periods is not significant. The table also 

shows that the average water temperature and, consequently, average energy consumption per shower, 

decreased slightly but significantly. However, we attribute that effect to seasonal patterns, with partic-

ipants taking less hot showers in summer which decrease the average of the 12-month data, compared 

to the two-month data captured in winter. This approach, however, only gives a first impression and is 

not ideal for the dataset.  Data points are not clustered at the household level. This implies that house-
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holds with a higher number of showers (2-person households in particular) are given an undue weight 

in the estimate. The approach does also not account for shower distribution over time. A regression 

model is therefore more suitable to analyze the time series data. A fixed-effects model that also ac-

counts for time trends (seasonal patterns) will be the method of choice for further analyses. 

 

Period Variable Mean SD error 95% confidence interval 

 

 

Short-term study 

Volume [l] 40.75 0.22 40.31 41.19 

Temperature [°C] 36.31 0.02 36.28 36.35 

Energy [kWh] 1.47 0.01 1.46 1.50 

 

 

Long-term study 

Volume [l] 40.12 0.15 39.82 40.41 

Temperature [°C] 35.94 0.02 35.90 35.99 

Energy [kWh] 1.43 0.01 1.42 1.44 

Table 1. Day-to-day means of the short- and long-term studies for the 31 treatment group 

households 

3.7 Outlook on further analysis 

The simple analysis presented in the previous paragraph gave a first impression of the results. They 

indicate that the effects remain relatively stable also over longer periods of time (12 months after the 

original study). This approach chosen so far, however, only gives a first impression and is not ideal for 

the dataset.  For instance, data points are not clustered at the household level. This implies that house-

holds with a higher number of showers (2-person households in particular) are given an undue weight 

in the estimate. The approach does also not account for shower distribution over time, nor does it take 

into account seasonal trends yet which influence all participating households alike.  

In the future analysis of the dataset, we will use a regression model which is more suited to analyze the 

time series data. We will use a fixed-effects model to control for time-invariant household-specific 

factors (e.g., type of shower) and estimate the model with ordinary least squares. In that model, will 

also include time trends to account for seasonal patterns. While the sample of households participating 

in the long-term study described in this paper is relatively small, the results of these analysis will help 

to answer with greater confidence whether the large conservation impact of the artifact described in 

(Tiefenbeck et al., forthcoming) is also persistent over time. The question of effect persistence is key 

to the cost-benefit analysis and to the projections we make in our large-scale studies. 

 

4 Conclusion 

As technology ownership and use increasingly migrates from larger organizations to customers and 

other stakeholders, considerable information capacity is placed in the hands of users. That implies that 

the responsibility for the environment no longer rests with the government or some large organization 

(Pitt et al., 2011). IS researchers and professionals can make valuable contributions on how to best 

leverage the potential of IS in the hands of empowered users in households, companies and other types 

of organizations. The artefact presented in this paper differs from existing information systems in sev-

eral ways: It provides feedback on a specific behavior, thus providing actionable information to con-

sumers. Furthermore, it is automatically activated and does not require any additional user interaction 

to access the feedback. In line with existing literature on “data push” systems, this may remove a key 

barrier to longer effect persistence of such systems and may be a reason for the very large effect on 

energy consumption. 



Tasic et al. /Short-term spark or sustained impact? 

 

 

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 9 

 

 

References 

Allcott, H., Mullainathan, S., 2010. Behavior and Energy Policy. Science 327, 1204–1205. 

doi:10.1126/science.1180775 

Allcott, H., Rogers, T., 2014. The Short-Run and Long-Run Effects of Behavioral Interventions: Ex-

perimental Evidence from Energy Conservation. American Economic Review forthcoming. 

Arroyo, E., Bonanni, L., Selker, T., 2005. Waterbot: Exploring feedback and persuasive techniques at 

the sink, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, CHI ’05. ACM, New York, NY, USA, pp. 631–639. doi:10.1145/1054972.1055059 

Attari, S.Z., 2014. Perceptions of water use. PNAS 111, 5129–5134. doi:10.1073/pnas.1316402111 

Attari, S.Z., DeKay, M.L., Davidson, C.I., Bruine de Bruin, W., 2010. Public perceptions of energy 

consumption and savings. Proceedings of the National Academy of Sciences 107, 16054–

16059. doi:10.1073/pnas.1001509107 

Ayres, I., Raseman, S., Shih, A., 2009. Evidence from Two Large Field Experiments that Peer Com-

parison Feedback Can Reduce Residential Energy Usage (Working Paper No. 15386). Nation-

al Bureau of Economic Research. 

Darby, S., 2006. The effectiveness of feedback on energy consumption - a review for DEFRA of the 

literature on metering, billing and direct displays. 

Degen, K., Efferson, C., Frei, F., Götte, L., Lalive, R., 2013. Smart Metering, Beratung oder Sozialer 

Vergleich: Was beeinflusst den Elektrizitätsverbrauch? (Final report to the Swiss Federal Of-

fice of Energy). 

Ehrhardt Martinez, K., Donnelly, K.A., Laitner, S., 2010. Advanced Metering Initiatives and Residen-

tial Feedback Programs: A Meta-Review for Household Electricity-Saving Opportunities 

(ACEEE Research Report No. E105). 

European Commission, 2014. Benchmarking smart metering deployment in the EU-27 with a focus on 

electricity. 

European Environment Agency, 2012. Households and industry responsible for half of EU greenhouse 

gas emissions from fossil fuels. 

Fielding, K.S., Spinks, A., Russell, S., McCrea, R., Stewart, R., Gardner, J., 2013. An experimental 

test of voluntary strategies to promote urban water demand management. Journal of Environ-

mental Management 114, 343–351. doi:10.1016/j.jenvman.2012.10.027 

Fischer, C., 2008. Feedback on household electricity consumption - A tool for saving energy? Energy 

Efficiency 1, 79–104. doi:10.1007/s12053-008-9009-7 

Foster, B., Mazur Stommen, S., 2012. Results from Recent Real-Time Feedback Studies. ACEEE. 

Froehlich, J., Findlater, L., Landay, J., 2010. The Design of Eco-feedback Technology, in: Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10. ACM, 

New York, NY, USA, pp. 1999–2008. doi:10.1145/1753326.1753629 

Gardner, G.T., Stern, P.C., 2008. The Short List: The Most Effective Actions U.S. Households Can 

Take to Curb Climate Change. Environment 50, 12–23. 

Kappel, K., Grechenig, T., 2009. “show-me”: Water consumption at a glance to promote water con-

servation in the shower, in: Proceedings of the 4th International Conference on Persuasive 

Technology, Persuasive ’09. ACM, New York, NY, USA, pp. 26:1–26:6. 

doi:10.1145/1541948.1541984 



Tasic et al. /Short-term spark or sustained impact? 

 

 

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 10 

 

 

Kuznetsov, S., Paulos, E., 2010. UpStream: Motivating water conservation with low-cost water flow 

sensing and persuasive displays, in: Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems, CHI ’10. ACM, New York, NY, USA, pp. 1851–1860. 

doi:10.1145/1753326.1753604 

Laschke, M., Hassenzahl, M., Diefenbach, S., Tippkaemper, M., 2011. With a little help from a friend: 

A shower calendar to save water, in: CHI ’11 Extended Abstracts on Human Factors in Com-

puting Systems. ACM, Vancouver, BC, Canada, pp. 633–646. 

McKerracher, C., Torriti, J., 2013. Energy consumption feedback in perspective: Integrating Australi-

an data to meta-analyses on in-home displays. Energy Efficiency 6, 387–405. 

doi:10.1007/s12053-012-9169-3 

Melville, N., 2010. Information Systems Innovation for Environmental Sustainability. Management 

Information Systems Quarterly 34, 1–21. 

Naderi, I., 2011. Green Behavior: Concern for the Self or Others, in: AMA Summer Educators’ Con-

ference Proceedings. p. 163. 

Pitt, L.F., Parent, M., Junglas, I., Chan, A., Spyropoulou, S., 2011. Integrating the smartphone into a 

sound environmental information systems strategy: Principles, practices and a research agen-

da. The Journal of Strategic Information Systems 20, 27–37. doi:10.1016/j.jsis.2010.09.005 

Raw, G., Ross, D., 2011. Energy Demand Research Project: Final Analysis - AECOM (No. 

60163857). Hertfordshire. 

Schleich, J., Klobasa, M., Goelz, S., Brunner, M., 2013. Effects of feedback on residential electricity 

demand - Findings from a field trial in Austria. Energy Policy 61, 1097–1106. 

doi:10.1016/j.enpol.2013.05.012 

Tiefenbeck, V., Götte, L., Degen, K., Tasic, V., Staake, T., forthcoming. Investigating the effective-

ness of real-time feedback: the influence of demographics, attitudes, and personality traits 

(ewz-Amphiro study Final Report to the Swiss Federal Office of Energy). 

Tiefenbeck, V., Tasic, V., Schoeb, S., Staake, T., 2013. Mechatronics to drive environmental sustaina-

bility: Measuring, visualizing and transforming consumer patterns on a large scale, in: Pro-

ceedings of the IEEE IECON 2013, Special Section on Energy Informatics, Energy Informat-

ics 2013. IEEE. 

U.S. Department of Energy, 2012. Buildings Energy Data Book. 

Van Dam, S.S., Bakker, C.A., van Hal, J.D.M., 2010. Home energy monitors: impact over the medi-

um-term. Building Research & Information 38, 458–469. doi:10.1080/09613218.2010.494832 

Willis, R.M., Stewart, R.A., Panuwatwanich, K., Jones, S., Kyriakides, A., 2010. Alarming visual dis-

play monitors affecting shower end use water and energy conservation in Australian residen-

tial households. Resources, Conservation and Recycling 54, 1117–1127. 

doi:10.1016/j.resconrec.2010.03.004 

 

 


